STATUS OF MAGNETS FOR THE ESRF II

OUTLINE

Magnetic design

IDs & BM sources

J. Chavanne

G. Lebec

C. Benabderrahmane

C.Penel

On behalf the accelerator upgrade project team

PRELIMINARY REMARKS

Specificity of ESRF accelerator upgrade

2BA-> 7BA with same circumference (844m)

- Longitudinal compactness: limited space between magnets (~ few centimeters)
- Common denominator for upgraded facilities

PRELIMINARY REMARKS (CONT.)

Magnet apertures [mm]

type	Existing	new
Dipole	50	25
Quadrupoles	72	25 - 32
Sextupoles	72	38

- Increasing Sensitivity of field quality to mechanical errors
- Constraints on vacuum chamber design

GOOD FIELD REGIONS (GFR)

Two GFRs defined:

		Center HxV [mm²]
Good Field Region radius	13x9	7x5

FIELD QUALITY

Magnet type	GFR radius [mm]	Field quality (systematic)	Tuning range [%]
DL	13	D <i>B/B</i> < 10 ⁻³	0
DQ	7	D <i>G</i> / <i>G</i> < 10 ⁻²	Gradient: +/- 2
Q – 50 T/m	13	D <i>B</i> /B < 5 10 ⁻³	55 – 110
Q - 85 T/m	7	D <i>B</i> /B < 5 10 ⁻⁴	95 – 105
S	13	D <i>H</i> /H < 0.1	20 – 130
0	13		0 – 145

QUADRUPOLES

Parameters

Moderate gradient: 51 T/m

length 0.16...0.29 m

4 units/cell

High gradient: 85 T/m,

length 0.39...0.48 m

12 units/cell

Bore radius: 12.8 mm (HG) / 15.9 mm (MG)

min. Vertical gap: 11 mm

Power consumption: 1...1.6 kW

Solid / laminated iron yoke

HG prototype under construction

SEXTUPOLES

• 900...1600 T/m² nominal strength

- ~ 2200 T/m² @ max current
- Iron length 204 mm & ~ 160 mm
- bore radius 19 mm
- Laminated magnet
- 6 units/cell
- 1st Engineering design completed
- 2nd simplified version under completion

OCTUPOLES

parameters

- Strength: up to 65 10³ T/m³
- Solid iron poles
- Water-cooled coils
- •2 units/cell

Prototype

- First prototype built and measured
- Measured int. strength: 4504 T/m² @ 6.2A
- air-cooled coils

CORRECTORS

Corrector design

- "Flat sextupole"
- Dipole: 10 T mm (normal), 5 T mm (skew)
- Quadrupole: 0.3 T(normal), 0.4 T (skew)
- Sextupole: 5 T/m (normal)
- Easy to install around the vacuum chamber
- Field optimization in progress
- •3 units/cell (+ integrated correctors in sextupoles)

COMBINED DIPOLE-QUADRUPOLES

Parameters

- " Half quadrupole" concept
- "Single-sided" magnet: easy access on one side
- 0.54 T, 33.9 T/m, 1.08 m (DQ1), and 0.43 T, 33.7 T/m, 0.72 m (DQ2)
- Same pole shape and magnet curvature for DQ1 and DQ2
- •Trimming coils: +/-2 % gradient at fixed field
- Solid iron magnet
- •3 units/cell

COMBINED DIPOLE-QUADRUPOLES

Magnetic design

- Field integrated along a curved path
- Field integrals on the boundary of an elliptic Good Field Region (GFR)

DG/G expressed in 10^{-3} . Specification: DG/G < 10^{-2} GFR: 7x5 mm. Integration on an arc.

DL MAGNETIC DESIGN

Different magnetic design visited @ ESRF

Resistive DLs

Permanent Magnet DLS

DLS- DIPOLES WITH LONGITUDINAL FIELD GRADIENT

Parameters

Iron dominated permanent magnet structure

High coercivity Sm₂Co₁₇ PM material

High stability against radiation induced demagnetization

- 5 modules with different field
- Total length 1788 mm
- magnetic gap 25 mm
- solid iron magnet
- prototypes under measurements

4 units/cell

128 units

DL field profile

PM DIPOLE MODULES

Iron pole and yoke PM blocks Aluminium spacers

From concept

DL module

Number of PM blocks is module dependent 190 mm

To real structure (2 modules)

Weight ~ 83 kg/module

Target: setup a low cost simple design

240 mm

DL – LONGITUDINAL GRADIENT DIPOLES

Longitudinal field profile

- field sharing controlled with longitudinal gap ($g_s = 3 \sim 6$ mm)
- very moderate Longitudinal force (even cancelled in some cases)
- •The "optimum" g_s changes between the modules of the full magnet (field step dependence)

DL – LONGITUDINAL GRADIENT DIPOLES

Homogeneity of central field

- Quality dominated by pole faces parallelism
- May need refinement of mechanical tolerances
- Easy and fast mechanical correction (shimming)
- Tolerance: $DB/B < 10^{-3}$ @13 mm

Module 2 (Hall probe meas.)

Optimized pole shape

Module 1 (Hall probe meas.)

DL – LONGITUDINAL GRADIENT DIPOLES

Integrated field

- Preliminary study on straight integrals
- Stretched wire method
- Two modules with 0.62 T and 0.41 T
- Longitudinal gap 5 mm between poles

- End effect (sextupole) shims not installed
- Will improve with additional modules

TEMPERATURE COMPENSATION

Temperature compensation

- Fe-Ni material (Thermoflux 55/100 G) used for passive compensation
- Tested with **NdFeB** magnets (thermal coefficient 3 times larger than for Sm₂Co₁₇ magnets)

Measured performance on prototype:

- NMR probe measurements
- $\Delta B/B/dT = 10^{-4}/C / mm \text{ of shim } @ 0.64 T$
- Agree well with simulation
- DL field can be easily stabilized (Sm₂Co₁₇)
 - stability < 5 10⁻⁵/C
 - 290 kg Fe-Ni needed for all 128 DLs
 - DL field reduced by ~ 1.2 %

PM STRUCTURES R&D: HIGH GRADIENT COMPACT QUADRUPOLES

R&D topic, not committed for the ongoing upgrade

Parameters

- •82 T/m gradient
- •Simple PM rectangular shape
- |DG/G| < 10⁻³ @ 7mm horizontal (measured)
- Easy correction (shimming)
- vertical pole gap: 10.2 mm
- •Length 230 mm
- 40 kg

210 mm

MEASUREMENT BENCHES

Stretched wire bench

- New measurement methods
- New calibration procedures
- Simplification of the control software

Vibrating wire bench

- Development of the wire position monitors
- Generator for wire excitation
- Vibrating wire analysis R&D
- Same bench as stretched + vibrating wire layer

MEASURING BENCHES:LOCAL FIELD MAPPING

Hall probe benches as used for IDs

- Developed at ESRF
- Several units in use
- Linear motors
- 3D hall sensors
- On the fly measurements
- Well performing hall data processing

- New implementation
- Accurate 3D trajectory of hall probe
 - NEWPORT XPS controllers (already existing)
 - To be used for curved prototypes/pre-series magnets (DQs, DLs)

MAGNETIC MEASUREMENTS & ALIGNMENT STRATEGIES

Stretched/vibrating wire used as much as possible

- Field quality control (harmonic analysis, ... etc)
- Fiducialization of individual magnets
- Quadrupoles, sextupoles, octupoles
- DL modules and full DLs
- DQs SW measurements under study
- ESRF would build and provide benches (+ training) for vendors

Local field measurements

- Field quality control at ESRF
- Prototypes only

BM TYPE PHOTON SOURCES

- Implementation of 3 Pole Wigglers (3PWs)
 - Compensates lower field BM source
 - Restore hard X-ray capacity for BLs
 - Short devices ~ 150 mm size
 - Fixed gap (at least at initial operation)
 - Mini Insertion Device

BM sources Combined dipole quadrupole (DQ) 3 PWs

3PW installed downstream of first dipole

W3Ps:

- fixed gap simple device devices (~ portable device)
- Field adaptable to beamline needs

W3P PHOTON PERFORMANCE

Several W3P designs

Hybrid

Few structures to be constructed in-house in 2015

INSERTION DEVICES

Most of existing devices will be used in the upgraded storage ring

- 6 GeV → 6 GeV
- reverse engineering needed in a few straight sections (6 m → 5 m)

PHOTON SOURCES: SMALL GAP DEVICES

R&D pursued on CPMUs 3rd device under construction

- New PM material developed by Vacuumschmelze
- PrFeB, Br =1.62 T, $|\mu_0Hc_1|$ > 7 T @ 80 K
- includes Grain boundary Diffusion
- · New magnetic measurement system
- Installation mid-2015

EVOLUTION OF CPMUS

SUMMARY

- Significant work done since last DLSR workshop
- Magnet design mostly completed
 - Innovative concepts (PM DLs, DQs)
 - Still a lot to do
- Ongoing measurements of prototypes provide useful feedback
- Engineering design at suitable stage for tendering processes
 - Technical specs starting
 - calls for tenders mid 2015/2016
- Development of magnetic measurement tools
- New BM type sources (3PWs)
- Smaller gap/shorter periods CPMUs

THE END

